The generator matrix 1 0 1 1 1 X^3+X^2+X X 1 1 X^3+X^2 1 1 X^2+X 1 X^3+X 1 1 1 X^3 1 X^2 X^3+X X^3+X^2+X 1 1 X^3+X 1 X^2+X X 1 1 1 1 0 1 X+1 X^2+X X^3+X^2+1 1 1 X^3+X^2 X^2+X+1 1 X^3+X^2+X X^2+1 1 X^3+X 1 1 X^3 X+1 1 X^2 1 1 1 X 0 1 X^3+1 1 X^2+X X X^3+X^2+1 X^2+X X^3 0 0 X^2 0 X^3+X^2 X^2 X^3+X^2 0 X^3+X^2 0 X^2 X^3 X^3 X^3 0 X^3+X^2 X^2 0 X^2 X^2 X^3+X^2 X^3 X^3+X^2 X^3+X^2 X^3 0 X^3 X^3 X^2 X^2 X^3+X^2 0 X^2 0 0 0 X^3 0 0 X^3 0 X^3 X^3 0 0 X^3 X^3 0 X^3 0 X^3 0 X^3 X^3 X^3 0 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 0 0 0 0 X^3 0 X^3 X^3 0 X^3 X^3 X^3 0 X^3 X^3 X^3 0 X^3 0 0 0 X^3 X^3 X^3 0 0 0 X^3 0 0 0 X^3 X^3 generates a code of length 33 over Z2[X]/(X^4) who´s minimum homogenous weight is 29. Homogenous weight enumerator: w(x)=1x^0+140x^29+214x^30+648x^31+598x^32+1018x^33+492x^34+614x^35+196x^36+120x^37+30x^38+12x^39+4x^40+2x^41+6x^43+1x^48 The gray image is a linear code over GF(2) with n=264, k=12 and d=116. This code was found by Heurico 1.16 in 69.2 seconds.